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Abstract
We apply a first-principles method based on the density functional theory within
the generalized gradient approximation, and the full-potential linear augmented
plane-wave method, to calculate the structural and electronic properties of
cubic (BN)xC2(1−x) ordered alloys. We investigate the equilibrium lattice
parameters, the bulk moduli, the density of states, the band-gap energies and
the effective masses of the conduction and valence bands along the [111], [100]
and [110] directions. The obtained results are used to provide effective-mass
and Luttinger parameters, and to give an important guideline to the material’s
design for optoelectronic devices, we link the first-principles band calculations
with effective mass theory.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diamond (C) and cubic boron nitride (c-BN) have attracted both scientific and technological
interest in recent years. Their fascinating mechanical properties, such as hardness, high melting
point (>3000 K), high thermal conductivity (200 W m−1 K−1), and large bulk moduli (442
and 369 GPa for C and BN, respectively) make them useful for protective coatings, high-
speed cutting, and polishing of ferrous alloys [1–6]. Their electronic properties, characterized
by large band-gap energies (5.5 and 6.1 eV for C and BN, respectively) and low dielectric
constants, indicate potential device applications in ultraviolet optics and high-temperature
electronics [7–9]. The alloying between c-BN and C, producing (BN)x C2(1−x) alloys, leads
to the possibility to obtain new super-hard and super-abrasive materials by controlling the
composition. In addition, these alloys are expected to be thermally and chemically more
stable than diamond, and harder than c-BN [9, 11]. The promising potentialities of these
materials have motivated extensive experimental [2–6] and theoretical [7–19] studies. With
respect to the theoretical studies, some electronic-structure calculations have been published

0953-8984/06/133509+08$30.00 © 2006 IOP Publishing Ltd Printed in the UK 3509

http://dx.doi.org/10.1088/0953-8984/18/13/018
http://stacks.iop.org/JPhysCM/18/3509


3510 R de Paiva and S Azevedo

for compounds based on c-BN and C with cubic structure. Most of the results of electronic-
structure calculations are addressed to the question of the band-gap behaviour, the energy
formation, the phase stability, and the structural properties such as bulk modulus and pressure
dependence of the band-gap energies [7–19]. In spite of these works, comprehensive control
of device characteristics of these materials remains a technological challenge and still requires
detailed understanding of their physical and chemical behaviour. In particular, although the
effective-mass approximation is used extensively throughout the literature, the actual electron
and hole effective masses for the alloys in the whole range of x are unknown. The transport
and optical phenomena are usually governed by the band structures in the immediate vicinity
of the Brillouin zone centre. Thus, the effective-mass approximation turns out to be an
appropriate method to make an analysis of the electronic properties of materials. The aim
of the present paper is to present a systematic study of the structural and electronic properties
of cubic (BN)x C2(1−x) (x = 0.00, 0.25, 0.50, 0.75, 1.00) ordered alloys on the basis of first-
principles band calculations, and to derive valence-band and conduction-band effective masses,
as well as the Luttinger parameters. Therefore, we focus on the electronic structures around the
valence-band maximum and the conduction-band minimum, and we obtain the effective-mass
parameters (electron effective mass and hole effective masses), or, equivalently, the Luttinger
parameters. As a result, we predict significant parameters of these materials, which can be used
for the design of optoelectronic devices.

2. Theoretical framework

We carry out self-consistent and first-principles calculations using the full-potential linear
augmented plane-wave (FP-LAPW) method (Wien2k code [20]) within the local density
functional theory (DFT) [21] in the generalized gradient approach (GGA) [22]. The exchange–
correlation potential within the generalized gradient approximation is calculated using the
parameterization scheme of Perdew et al [22]. All core and valence states are treated self-
consistently. We have included scalar-relativistic effects for all valence states. Core states are
calculated fully relativistically, retaining only the spherical part of the potential. We do not
consider spin–orbit coupling. The charge density was self-consistently determined using 32
k-points in the irreducible symmetry wedge of the Brillouin zone. The maximum spherical
harmonic l-value of partial waves inside the atomic spheres were set equal to 10. The muffin-
tin sphere radius was assumed to be 0.74 Å for all atoms. The basis set size was fixed by
choosing Rkmax = 7.0. Self-consistency was achieved by demanding the convergence of both
the total energy and the eigenvalues to be smaller than 10−6 eV.

In figure 1, we show the supercell (space group P1) containing eight atoms used
in order to simulate the ordered alloys with cubic phase and compositions x =
0.00, 0.25, 0.50, 0.75, 1.00. In the substitution process we applied the consideration made by
Tateyama et al [9], who predicted that the most stable (BN)x C2(1−x) structures have no B–B
or N–N bonds, and maximize the number of C–C and B–N bonds connections with C–B bond
disfavoured.

3. Results and discussion

3.1. Structural properties

The equilibrium lattice parameters, a, were determined by means of the total energy and force
calculations by relaxing the unit-cell volume without relaxing its internal structure, and the
bulk moduli, B0, were obtained by fitting the data to the Murnaghan equation of states [23].
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Figure 1. Supercell used to simulate the (BN)x C2(1−x) ordered alloys with compositions (a) x =
0.0, (b) x = 0.25, (c) x = 0.50, (d) x = 0.75 and (e) x = 1.0.
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Figure 2. Composition dependence of the calculated equilibrium lattice parameters (a) and bulk
modulus (b) of (BN)x C2(1−x) ordered alloys.

The values for binary compounds and their alloys, compared to experimental data and previous
calculations, are shown in table 1. Our results for a and B are in good agreement with the
available experimental data and other theoretical obtained from plane-wave pseudopotential
(PWPP) and linear-muffin-tin-orbital (LMTO-ASA) calculations. The differences encountered
between experimental data and our results were less than 0.5% for lattice parameter and less
than 2% for bulk modulus, which is the accuracy normally achieved within the GGA [30].
Figures 2(a) and (b) show the variation of the calculated equilibrium lattice parameters and bulk
moduli with composition for (BN)x C2(1−x) ordered alloys, respectively. The trends, which can
be observed from figure 2, are the following. (i) The variation of the lattice parameters with
composition exhibits a small deviation from Vegard’s law with upward bowing parameters
equal to −0.08 Å, obtained by fitting the calculated values with a quadratic polynomial
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Table 1. Calculated lattice parameters, a, and bulk modulus, B0, for (BN)x C2(1−x) ordered alloys,
compared to experimental data and previous calculations.

Lattice parameters a (Å) Bulk modulus B0 (GPa)

x This work Expt. Other cal. This work Expt. Other cal.

0.00 3.576 3.567a 3.53b, 3.56c 4.34 4.42h, 4.43a 4.80b, 4.38c

3.561d, 3.546e 4.64d, 4.426e

3.539f, 3.571g 4.574f, 4.47g

0.25 3.604 3.99
0.50 3.623 3.602a, 3.642i 3.577d, 3.583f 3.77 2.82i 4.38d, 3.997f

3.591g, 3.60j 4.19j

0.75 3.631 3.69
1.00 3.628 3.615k, 3.617a 3.606l, 3.58b 3.73 4.65m, 2.90n 3.67l, 4.12b

3.572d, 3.596e 3.66d, 3.525e

3.594f, 3.623g 3.932f, 3.68g

3.63o 3.86o

a Reference [3].
b LMTO-ASA within LDA [7].
c Reference [24].
d PWPP within LDA from [9].
e PWPP within GGA from [11].
f PWPP within LDA from [12].
g FP-LAPW within GGA from [16].
h From elastic constants measured by Brillouin scattering [25].
i Reference [5].
j FP-LAPW within GGA from [26].
k Reference [27].
l PWPP within LDA from [28].
m Interpreted using empirical relations for the elastic constants [24].
n From estimated elastic constants [6].
o FP-LAPW within GGA from [29].

function. The physical origin of this small upward bowing parameter may be due to the small
mismatches of the lattice parameters of BN and C. (ii) The composition dependence of the bulk
modulus shows a significant deviation from linear composition dependence, with downward
bowing equal to 1.06 Mbar. The large bowing values is rooted in the significant mismatch of
the bulk modulus of BN and C. (iii) The bulk modulus has just the opposite behaviour to the
lattice parameter, as was to be expected.

3.2. Electronic properties

For the (BN)xC2(1−x) ordered alloys, the calculations of the band structures for all composition
gave an indirect band gap, with the valence-band maximum at the � point and conduction-
band maximum at the X point. The behaviour of the calculated band-gap energies with the
composition for (BN)xC2(1−x) ordered alloys is given in figure 3. In order to observe these
changes in band-gap energies we show the total density of states in figure 4. The density
of states for the (BN)x C2(1−x) ordered alloys lies mainly in three energy regions: (i) the
lowest region, stemming mainly from N 2s states, (ii) the region at the top of the valence
band, mainly due to C states mixed with some N 2p states, and (iii) the region just above
EF, dominated by unoccupied BN states with a significant B component because of the
cation nature of the latter. The reduction of band-gap energy, observed in figure 4, can be
assigned to the shift of the C states to high energy in the valence band and to an analogue
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Figure 3. Composition dependence of the calculated band gap for (BN)x C2(1−x) ordered alloys.
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Figure 4. Total density of states for the (BN)x C2(1−x) ordered alloys. The vertical line denote the
position of the Fermi energy, which has been chosen to be 0.0 eV.

lowering of the states in the conduction band. The shifting of the energies of the C states
and the consequent reduction of the band gap can be correlated to: (i) the fact that the atomic
energy levels of C are between those of B and N [7, 8], and (ii) a certain weakening of C–C
bonds in (BN)x C2(1−x) ordered alloys. A large composition dependence of band-gap energy
is clearly visible with upward bowing parameter equal to 8.77 eV, obtained by fitting to a
parabola the curves of band-gap energies versus composition. This value can be compared
with that estimated from other theoretical works [7, 8, 16]. Lambrecht and Segall [7, 8], using
the LMTO-ASA method and local density approach, investigated the electronic properties
of (BN)x C2(1−x) (x = 0.0, 0.25, 0.50, 0.75, 1.00) alloys; the band-gap bowing parameter
estimated from their results is 7.97 eV. Zaoui and Hassan [16], using the FP-LAPW method,
studied the electronic structure and disorder effects in (BN)xC2(1−x) (x = 0.0, 0.5, 1.0) alloys;
the band-gap bowing parameter estimated from their results is 10.01 eV. The values of band-
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Table 2. Band-gap energy, Eg, of cubic (BN)x C2(1−x) ordered alloys at equilibrium lattice
parameter, in eV.

Eg (eV)

x This work Other cal. Expt.

0.00 4.11 4.11a, 3.51b 5.50c

0.25 2.20 2.30a

0.50 2.05 2.51a, 1.98b

0.75 3.18 3.29a

1.00 4.46 4.69a, 4.84b 6.40c

a LMTO-ASA within LDA [7, 8].
b LAPW within GGA [16].
c Reference [31].

gap energy of cubic (BN)x C2(1−x) alloys at equilibrium lattice parameter are depicted in table 2.
Considering that the GGA tends to underestimate the band-gap energies, our results are in good
agreement with the experimental and other theoretical values. Comparing our results with
these calculations, one can deduce that the band-gap bowing parameter and band-gap energy
are directly related to the variation of the composition and the atomic arrangement in the unit
cell. Besides the band-gap energy, the effective masses at the valence-band maximum and the
conduction-band minimum are also of vital importance in electrical properties. Therefore, we
focus on the electronic structure around the valence-band maximum and the conduction-band
minimum, and we obtain the electron effective masses, hole effective masses, and, equivalently,
the Luttinger parameter [32, 33]. We calculated heavy-hole (hh) and light-hole (lh) effective
masses in the [111], [100], and [110] directions, and the electron effective mass. The heavy-
hole and light-hole effective masses were obtained by fitting to a parabola the curves of energy
versus k in the range from −0.04 (2π/a) to 0.04 (2π/a), along the [111], [100], and [110]
directions. The electron effective masses were obtained in a similar way by the energy curves
starting from the conduction-band minimum at the X point. The corresponding effective masses
for binary compounds and their alloys are given in table 3. There is a general agreement
between our results and those available in the literature. By using the following expressions:

γ1 = 1

2

(
1

m[100]
lh

+ 1

m[100]
hh

)
,

γ2 = 1

4

(
1

m[100]
lh

− 1

m[100]
hh

)
,

γ3 = 1

4

(
1

m[100]
lh

+ 1

m[100]
hh

− 2

m[111]
hh

)
.

(1)

and the calculated values for the effective masses, we obtained values for the Luttinger
parameter, γi , which are shown in table 4. The literature is scarce in experimental and first-
principles calculated values of the effective masses for the materials studied in this work.
According to our first-principles calculations, the hole masses have non-negligible k-directional
dependence, which is important when designing devices. In addition, the Luttinger parameters
are very important for the calculation of other systems, such as quantum wells and superlattices
that need these parameters as input [29, 33]. The calculated effective masses of the light-
hole along the [100] direction are bigger than the calculated masses along the [111] and [110]
directions, which are coincident. On the other hand, the calculated effective masses of the
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Table 3. Effective masses for electrons (e), heavy-holes (hh) and light-holes (lh) (in units of the
free electron mass m0), along the [111], [100], and [110] directions for cubic (BN)x C2(1−x) ordered
alloys.

x me m[100]
hh m[100]

lh m[111]
hh m[111]

lh m[110]
hh m[110]

lh

0.00 0.4726 0.5113 0.3040 0.6961 0.1761 0.3001 0.2112
0.25 0.4859 0.4361 0.3276 0.7911 0.2046 0.2848 0.2678
0.50 0.3237 0.4117 0.3912 0.9115 0.2716 0.4424 0.3898
0.75 0.8702 0.4734 0.4462 0.9451 0.2392 0.3613 0.3174
1.00 0.9290 0.5358 0.5043 1.2637 0.2437 0.5355 0.2799

0.94a 0.53a 0.51a 1.26a 0.33a 1.09a 0.35a

0.75b 0.37b 0.15b 0.93b 0.11b

a LAPW within GGA [29].
b Landolt-Börnstein tables [27].

Table 4. Luttinger parameter of cubic (BN)x C2(1−x) ordered alloys.

γ1 γ2 γ3

x This work Other cal. This work Other cal. This work Other cal.

0.00 2.62 0.33 0.59
0.25 2.67 0.19 0.70
0.50 2.49 0.03 0.70
0.75 2.18 0.03 0.56
1.00 1.92 1.92a 0.02 0.02a 0.57 0.56a

a LAPW within GGA [29].

heavy-hole along the [111] direction are bigger than the masses along the [100] direction,
which are also almost coincident. This behaviour may be due to the alignment of the band
energy in BN (conduction-band minimum) and diamond (valence-band maximum). In table 4
we can see that the Luttinger parameters increase as the BN composition decreases.

4. Conclusion

In summary, we have obtained the structural, electronic, and effective mass properties of
(BN)xC2(1−x) ordered alloys (x = 0.0, 0.25, 0.50, 0.75, 1.0) using the FP-LAPW method
and the GGA. For the binary compounds we find that the lattice parameters are 0–1% larger,
the bulk moduli 1–2% smaller, and the band-gap energies approximately 20–30% smaller as
compared to the experimental results. The lattice parameters and bulk moduli are in good
agreement with other calculations and experimental data, where they are available. The
lattice parameter of (BN)x C2(1−x) ordered alloys exhibits a small deviation from Vegard’s law
with upward bowing parameters equal to −0.08 Å. On the other hand, the bulk modulus
shows a significant deviation from linear concentration dependence, with downward bowing
equal to 1.06 Mbar. We found a strong composition dependence of the band-gap energy of
(BN)xC2(1−x) ordered alloys. Our results suggest that the bowing of (BN)x C2(1−x) ordered
alloys has a remarkable contribution from the structural effect. The electron effective mass, hole
effective masses, or equivalently, the Luttinger parameters were derived from the calculated
band structures near the conduction-band minimum and the valence-band maximum. From
the analysis of our results, we observe a strong dependence of the structural and electronic
properties with the composition, and deduce that the atomic arrangement of these materials
used in the calculations are critical for the results.
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